Speaker
Description
Precise molecular orientation is crucial for optimizing chemical reaction efficiency and enabling distortion-free measurements in the molecular frame [1,2]. We propose using Quantum Optimal Control theory to orient any molecular axes along any laboratory direction, extending previous results on ground-state molecular rotational states [3,4]. Specifically, we focus on highly rotating molecular states, known as superrotors. These states exhibit stable alignment on a plane due to centrifugal forces, making them promising candidates for precise control of the non-aligned molecular axis.
Beyond controlling molecular orientation, we extend our framework to manipulate spin states [5] in molecular spin chains, providing a versatile tool for quantum information processing and transport.
[1] H. Stapelfeldt and T. Seideman, Rev. Mod. Phys. 75, 543–557 (2003)
[2] Y. Sheng, Y. Yan, P. F. Cui, J. Yu, S. Chai and S. L. Cong, Chem. Phys. 563, 111690 (2022)
[3] L. H. Coudert, J. Chem. Phys. 146, 024303 (2017)
[4] R. González-Férez, and J. J. Omiste, Phys. Chem. Chem. Phys. 26, 4533–4540 (2024)
[5] A. Castro, A. García Carrizo, S. Roca, D. Zueco, and F. Luis, Phys. Rev. Appl. 17, 064028 (2022)