Resonance fluorescence—the light emitted by a coherently driven two-level quantum emitter—has long served as a paradigm in quantum optics. In this talk, I will present two recent experimental investigations that reveal both the fundamental richness and the technological potential of this seemingly simple system (1,2). In the first part, I revisit the textbook notion that a single atom cannot...
Collective atomic or solid-state excitations present important advantages for encoding qubits, such as strong directional coupling to light. Unfortunately, they are plagued by inhomogeneities between the emitters, which make the qubit decay into a quasi-continuum of dark states. In most cases, this process is non-Markovian. Through a simple and resource-efficient formalism, we unveil a regime...
Study of information scrambling in a quantum many-body system is key to understanding the dynamics of thermalization and the evolution towards equilibrium. This work reports our experimental investigation into this topical subject by directly observing the out-of-time-order correlation (OTOC) function in a Rydberg atom array.
A key challenge in measuring the OTOC in an analog-digital...